Two - Step Runge - Kutta Methods and Hyperbolic Partial Differential Equations
نویسنده
چکیده
The purpose of this study is the design of efficient methods for the solution of an ordinary differential system of equations arising from the semidiscretization of a hyperbolic partial differential equation. Jameson recently introduced the use of one-step Runge-Kutta methods for the numerical solution of the Euler equations. Improvements in efficiency up to 80% may be achieved by using two-step Runge-Kutta methods instead of the classical onestep methods. These two-step Runge-Kutta methods were first introduced by Byrne and Lambert in 1966. They are designed to have the same number of function evaluations as the equivalent one-step schemes, and thus they are potentially more efficient. By solving a nonlinear programming problem, which is specified by stability requirements, optimal two-step schemes are designed. The optimization technique is applicable for stability regions of any shape.
منابع مشابه
On High Order Strong Stability Preserving Runge-Kutta and Multi Step Time Discretizations
Strong stability preserving (SSP) high order time discretizations were developed for solution of semi-discrete method of lines approximations of hyperbolic partial differential equations. These high order time discretization methods preserve the strong stability properties–in any norm or seminorm—of the spatial discretization coupled with first order Euler time stepping. This paper describes th...
متن کاملChebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation
In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...
متن کاملStability of the fourth order Runge-Kutta method for time-dependent partial differential equations
In this paper, we analyze the stability of the fourth order Runge-Kutta method for integrating semi-discrete approximations of time-dependent partial differential equations. Our study focuses on linear problems and covers general semi-bounded spatial discretizations. A counter example is given to show that the classical four-stage fourth order Runge-Kutta method can not preserve the one-step st...
متن کاملThe Correct Formulation of Intermediate Boundary Conditions for Runge-Kutta Time Integration of Initial Boundary Value Problems
Pseudospectral and high-order finite difference methods are well established for solving time-dependent partial differential equations by the method of lines. The use of highorder spatial discretizations has led in turn to a concomitant interest in high-order time stepping schemes, so that the temporal and spatial errors are of comparable magnitude. Explicit Runge-Kutta methods are widely used ...
متن کاملImplicit-explicit Runge-kutta Schemes for Stiff Systems of Differential Equations
We present new implicit-explicit (IMEX) Runge Kutta methods suitable for time dependent partial differential systems which contain stiff and non stiff terms (i.e. convection-diffusion problems, hyperbolic systems with relaxation). Here we restrict to diagonally implicit schemes and emphasize the relation with splitting schemes and asymptotic preserving schemes. Accuracy and stability properties...
متن کامل